Sylvain Crovisier

Ergodicité des difféomorphismes conservatifs génériques

Résumé:
Le théorème de Kolmogorov-Arnold-Moser implique que la propriété d'ergodicité n'est pas dense parmi les difféomorphismes C^infini conservatifs d'une variété compacte. Par ailleurs Anosov et Sinai on montré que l'ergodicité est satisfaite par tout difféomorphisme C2 hyperbolique.

Je présenterai un travail obtenu avec A. Avila et A. Wilkinson : sous des hypothèses d'hyperbolicité bien plus faibles (positivité de l'entropie), l'ergodicité est satisfaite par la plupart des systèmes (i.e. par les difféomorphismes conservatifs C1-génériques).

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License